Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 64.076
1.
Funct Integr Genomics ; 24(2): 76, 2024 Apr 13.
Article En | MEDLINE | ID: mdl-38656411

Stroke is a leading cause of death and disability, and genetic risk factors play a significant role in its development. Unfortunately, effective therapies for stroke are currently limited. Early detection and diagnosis are critical for improving outcomes and developing new treatment strategies. In this study, we aimed to identify potential biomarkers and effective prevention and treatment strategies for stroke by conducting transcriptome and single-cell analyses. Our analysis included screening for biomarkers, functional enrichment analysis, immune infiltration, cell-cell communication, and single-cell metabolism. Through differential expression analysis, enrichment analysis, and protein-protein interaction (PPI) network construction, we identified HIST2H2AC as a potential biomarker for stroke. Our study also highlighted the diagnostic role of HIST2H2AC in stroke, its relationship with immune cells in the stroke environment, and our improved understanding of metabolic pathways after stroke. Overall, our research provided important insights into the pathogenesis of stroke, including potential biomarkers and treatment strategies that can be explored further to improve outcomes for stroke patients.


Single-Cell Analysis , Stroke , Stroke/genetics , Stroke/metabolism , Humans , Transcriptome , Biomarkers/metabolism , Protein Interaction Maps , Gene Expression Profiling
2.
Cell Rep Methods ; 4(4): 100741, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38569541

Deep proteomic profiling of rare cell populations has been constrained by sample input requirements. Here, we present DROPPS (droplet-based one-pot preparation for proteomic samples), an accessible low-input platform that generates high-fidelity proteomic profiles of 100-2,500 cells. By applying DROPPS within the mammary epithelium, we elucidated the connection between mitochondrial activity and clonogenicity, identifying CD36 as a marker of progenitor capacity in the basal cell compartment. We anticipate that DROPPS will accelerate biology-driven proteomic research for a multitude of rare cell populations.


Biomarkers , CD36 Antigens , Mammary Glands, Animal , Proteomics , Stem Cells , Proteomics/methods , CD36 Antigens/metabolism , Animals , Female , Stem Cells/metabolism , Mammary Glands, Animal/cytology , Mammary Glands, Animal/metabolism , Biomarkers/metabolism , Biomarkers/analysis , Epithelium/metabolism , Mice , Humans , Mitochondria/metabolism
3.
Am J Reprod Immunol ; 91(4): e13847, 2024 Apr.
Article En | MEDLINE | ID: mdl-38661639

PROBLEM: Polycystic ovary syndrome (PCOS), a prevalent endocrine-metabolic disorder, presents considerable therapeutic challenges due to its complex and elusive pathophysiology. METHOD OF STUDY: We employed three machine learning algorithms to identify potential biomarkers within a training dataset, comprising GSE138518, GSE155489, and GSE193123. The diagnostic accuracy of these biomarkers was rigorously evaluated using a validation dataset using area under the curve (AUC) metrics. Further validation in clinical samples was conducted using PCR and immunofluorescence techniques. Additionally, we investigate the complex interplay among immune cells in PCOS using CIBERSORT to uncover the relationships between the identified biomarkers and various immune cell types. RESULTS: Our analysis identified ACSS2, LPIN1, and NR4A1 as key mitochondria-related biomarkers associated with PCOS. A notable difference was observed in the immune microenvironment between PCOS patients and healthy controls. In particular, LPIN1 exhibited a positive correlation with resting mast cells, whereas NR4A1 demonstrated a negative correlation with monocytes in PCOS patients. CONCLUSION: ACSS2, LPIN1, and NR4A1 emerge as PCOS-related diagnostic biomarkers and potential intervention targets, opening new avenues for the diagnosis and management of PCOS.


Biomarkers , Mitochondria , Nuclear Receptor Subfamily 4, Group A, Member 1 , Polycystic Ovary Syndrome , Humans , Polycystic Ovary Syndrome/immunology , Polycystic Ovary Syndrome/metabolism , Female , Biomarkers/metabolism , Mitochondria/metabolism , Machine Learning , Adult , Mast Cells/immunology , Mast Cells/metabolism
4.
Sci Rep ; 14(1): 9519, 2024 04 25.
Article En | MEDLINE | ID: mdl-38664479

Female and latent genital tuberculosis (FGTB and LGTB) in young women may lead to infertility by damaging ovarian reserve function, but the regulatory mechanisms remain unclear. In this study, we investigated the effects of FGTB and LGTB on ovarian reserve function and potential regulatory mechanisms by untargeted metabolomics of follicular fluid, aiming to provide insights for the clinical management and treatment approaches for afflicted women. We recruited 19 patients with FGTB, 16 patients with LGTB, and 16 healthy women as a control group. Clinical data analysis revealed that both the FGTB and LGTB groups had significantly lower ovarian reserve marker levels compared to the control group, including lower anti-Müllerian hormone levels (FGTB: 0.82 [0.6, 1.1] µg/L; LGTB: 1.57 [1.3, 1.8] µg/L vs. control: 3.29 [2.9, 3.5] µg/L), reduced antral follicular counts (FGTB: 6 [5.5, 9.5]; LGTB: 10.5 [7, 12.3] vs. control: 17 [14.5, 18]), and fewer retrieved oocytes (FGTB: 3 [2, 5]; LGTB: 8 [4, 8.3] vs. control: 14.5 [11.5, 15.3]). Conversely, these groups exhibited higher ovarian response marker levels, such as longer gonadotropin treatment days (FGTB: 12 [10.5, 12.5]; LGTB: 11 [10.8, 11.3] vs. control: 10 [8.8, 10]) and increased gonadotropin dosage requirements (FGTB: 3300 [3075, 3637.5] U; LGTB: 3037.5 [2700, 3225] U vs. control: 2531.25 [2337.5, 2943.8] U). All comparisons were statistically significant at P < 0.05. The results suggested that FGTB and LGTB have adverse effects on ovarian reserve and response. Untargeted metabolomic analysis identified 92 and 80 differential metabolites in the control vs. FGTB and control vs. LGTB groups, respectively. Pathway enrichment analysis revealed significant alterations in metabolic pathways in the FGTB and LGTB groups compared to the control group (P < 0.05), with specific changes noted in galactose metabolism, biotin metabolism, steroid hormone biosynthesis, and nicotinate and nicotinamide metabolism in the FGTB group, and caffeine metabolism, primary bile acid biosynthesis, steroid hormone biosynthesis, and glycerophospholipid metabolism in the LGTB group. The analysis of metabolic levels has revealed the potential mechanisms by which FGTB and LGTB affect ovarian reserve function, namely through alterations in metabolic pathways. The study emphasizes the importance of comprehending the metabolic alterations associated with FGTB and LGTB, which is of considerable relevance for the clinical management and therapeutic approaches in afflicted women.


Latent Tuberculosis , Metabolomics , Ovarian Reserve , Tuberculosis, Female Genital , Humans , Female , Tuberculosis, Female Genital/metabolism , Adult , Metabolomics/methods , Latent Tuberculosis/metabolism , Follicular Fluid/metabolism , Anti-Mullerian Hormone/metabolism , Anti-Mullerian Hormone/blood , Infertility, Female/metabolism , Infertility, Female/microbiology , Young Adult , Case-Control Studies , Metabolome , Biomarkers/metabolism
5.
BMC Ophthalmol ; 24(1): 193, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664679

BACKGROUND: We aimed to investigate the anatomical features of optical coherence tomography (OCT) and vitreous cytokine levels as predictors of outcomes of combined phacovitrectomy with intravitreal dexamethasone (DEX) implants for idiopathic epiretinal membrane (iERM) treatment. METHODS: A prospective, single-masked, randomized, controlled clinical trial included 48 eyes. They were randomly assigned in a 1:1 ratio to undergo the DEX group (combined phacovitrectomy with ERM peeling and Ozurdex implantation) and control group (phacovitrectomy only). Best-corrected visual acuity (BCVA) and central macular thickness (CMT) were assessed at 1 d, 1 week, 1 month, and 3 months. The structural features of OCT before surgery were analysed for stratified analysis. Baseline soluble CD14 (sCD14) and sCD163 levels in the vitreous fluid were measured using ELISA. RESULTS: BCVA and CMT were not significantly different in the DEX and control groups. Eyes with hyperreflective foci (HRF) at baseline achieved better BCVA (Ptime*group=0.746; Pgroup=0.043, Wald χ²=7.869) and lower CMT (Ptime*group = 0.079; Pgroup = 0.001, Wald χ²=6.774) responses to DEX during follow-up. In all patients, the mean vitreous level of sCD163 in eyes with HRF was significantly higher than that in eyes without HRF (P = 0.036, Z=-2.093) at baseline. In the DEX group, higher sCD163 predicted greater reduction in CMT from baseline to 1 month (r = 0.470, P = 0.049). CONCLUSIONS: We found that intraoperative DEX implantation did not have beneficial effects on BCVA and CMT over a 3-month period in all patients with iERM, implying that the use of DEX for all iERM is not recommended. In contrast, for those with HRF on OCT responded better to DEX implants at the 3-month follow-up and thier vitreous fluid expressed higher levels of sCD163 at baseline. These data support the hypothesis that DEX implants may be particularly effective in treating cases where ERM is secondary to inflammation. TRIAL REGISTRATION: The trail has been registered at Chinese Clinical Trail Registry( https://www.chictr.org.cn ) on 2021/03/12 (ChiCTR2100044228). And all patients in the article were enrolled after registration.


Biomarkers , Dexamethasone , Drug Implants , Epiretinal Membrane , Glucocorticoids , Intravitreal Injections , Tomography, Optical Coherence , Visual Acuity , Vitreous Body , Humans , Dexamethasone/administration & dosage , Dexamethasone/therapeutic use , Tomography, Optical Coherence/methods , Male , Female , Prospective Studies , Glucocorticoids/administration & dosage , Glucocorticoids/therapeutic use , Aged , Epiretinal Membrane/surgery , Epiretinal Membrane/metabolism , Middle Aged , Vitreous Body/metabolism , Vitreous Body/diagnostic imaging , Biomarkers/metabolism , Single-Blind Method , Vitrectomy/methods , Phacoemulsification
6.
Proc Natl Acad Sci U S A ; 121(16): e2317783121, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38588430

GABAergic inhibitory interneurons, originating from the embryonic ventral forebrain territories, traverse a convoluted migratory path to reach the neocortex. These interneuron precursors undergo sequential phases of tangential and radial migration before settling into specific laminae during differentiation. Here, we show that the developmental trajectory of FoxG1 expression is dynamically controlled in these interneuron precursors at critical junctures of migration. By utilizing mouse genetic strategies, we elucidate the pivotal role of precise changes in FoxG1 expression levels during interneuron specification and migration. Our findings underscore the gene dosage-dependent function of FoxG1, aligning with clinical observations of FOXG1 haploinsufficiency and duplication in syndromic forms of autism spectrum disorders. In conclusion, our results reveal the finely tuned developmental clock governing cortical interneuron development, driven by temporal dynamics and the dose-dependent actions of FoxG1.


Cerebral Cortex , Neocortex , Mice , Animals , Cerebral Cortex/metabolism , Cell Movement/physiology , Neurogenesis/physiology , Interneurons/physiology , Biomarkers/metabolism , GABAergic Neurons/physiology
7.
PLoS Comput Biol ; 20(4): e1012022, 2024 Apr.
Article En | MEDLINE | ID: mdl-38607982

The Patient Similarity Network paradigm implies modeling the similarity between patients based on specific data. The similarity can summarize patients' relationships from high-dimensional data, such as biological omics. The end PSN can undergo un/supervised learning tasks while being strongly interpretable, tailored for precision medicine, and ready to be analyzed with graph-theory methods. However, these benefits are not guaranteed and depend on the granularity of the summarized data, the clarity of the similarity measure, the complexity of the network's topology, and the implemented methods for analysis. To date, no patient classifier fully leverages the paradigm's inherent benefits. PSNs remain complex, unexploited, and meaningless. We present StellarPath, a hierarchical-vertical patient classifier that leverages pathway analysis and patient similarity concepts to find meaningful features for both classes and individuals. StellarPath processes omics data, hierarchically integrates them into pathways, and uses a novel similarity to measure how patients' pathway activity is alike. It selects biologically relevant molecules, pathways, and networks, considering molecule stability and topology. A graph convolutional neural network then predicts unknown patients based on known cases. StellarPath excels in classification performances and computational resources across sixteen datasets. It demonstrates proficiency in inferring the class of new patients described in external independent studies, following its initial training and testing phases on a local dataset. It advances the PSN paradigm and provides new markers, insights, and tools for in-depth patient profiling.


Computational Biology , Precision Medicine , Humans , Computational Biology/methods , Precision Medicine/methods , Neural Networks, Computer , Algorithms , Genomics/methods , Biomarkers/metabolism , Gene Expression Profiling/methods , Proteomics/methods , Multiomics
8.
Front Endocrinol (Lausanne) ; 15: 1361715, 2024.
Article En | MEDLINE | ID: mdl-38654925

Introduction: Hair cortisol level has recently been identified as a promising marker for detecting long-term cortisol levels and a marker of hypothalamic-pituitary-adrenal cortex (HPA) axis activity. However, research on the association between obesity and an altered cortisol metabolism remains controversial. Objective: This study aimed to investigate the relationship between hair cortisol levels and overweight and obesity in participants from the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Methods: This was a cross-sectional study involving 2,499 participants from the second follow-up (visit 3, 2017-2019) attending research centers in Rio de Janeiro and Rio Grande do Sul states. Hair samples were collected, and cortisol levels were analyzed using enzyme-linked immunosorbent assay (ELISA) kits. Cortisol levels were classified as low (< 40 pg/mg), medium (40-128 pg/mg), or high (> 128 pg/mg). The participants were classified as eutrophic, overweight, or obese according to their weight (kg) and height (m2). Odds ratios (ORs) with 95% confidence intervals (95%CI) were estimated. Results: Of the 2499 individuals, 30% had eutrophic weight, 40% were overweight, and 30% were obese. Notably, cortisol levels gradually increased with increasing body weight. Among participants with high hair cortisol levels, 41.2% were classified as overweight and 34.2% as obese. Multinomial logistic regression analysis indicated that participants with high cortisol levels were 43% (OR =1.43; 95%CI: 1.02-2.03) more likely to be overweight and 72% (OR =1.72; 95%CI:1.20-2.47) more likely to be obese than participants with low hair cortisol levels. After adjustment for all covariates, high cortisol levels remained associated with obesity (OR = 1.54; 95%CI:1.02-2.31) and overweight (OR =1.33; 95%CI:0.91-1.94). Conclusion: In the ELSA-Brazil cohort, hair stress were positively associated with overweight and obesity. These results underscore the importance of considering stress and cortisol as potential factors in obesity prevention and intervention efforts, and highlight a novel aspect of the complex relationship between stress and obesity in the Brazilian population.


Hair , Hydrocortisone , Obesity , Overweight , Humans , Hydrocortisone/metabolism , Hydrocortisone/analysis , Hair/chemistry , Hair/metabolism , Male , Female , Middle Aged , Obesity/metabolism , Obesity/epidemiology , Cross-Sectional Studies , Overweight/metabolism , Overweight/epidemiology , Brazil/epidemiology , Adult , Longitudinal Studies , Biomarkers/analysis , Biomarkers/metabolism , Aged , Cohort Studies
9.
Front Endocrinol (Lausanne) ; 15: 1327800, 2024.
Article En | MEDLINE | ID: mdl-38654926

Introduction: Azoospermia, characterized by an absence of sperm in the ejaculate, represents the most severe form of male infertility. While surgical sperm retrieval in obstructive azoospermia (OA) is successful in the majority of cases, patients with non-obstructive azoospermia (NOA) show retrieval rates of only about 50% and thus frequently have unnecessary surgery. Surgical intervention could be avoided if patients without preserved spermatogenesis are identified preoperatively. This prospective study aimed to discover biomarkers in seminal plasma that could be employed for a non-invasive differential diagnosis of OA/NOA in order to rationalize surgery recommendations and improve success rates. Methods: All patients signed written informed consent, underwent comprehensive andrological evaluation, received human genetics to exclude relevant pathologies, and patients with azoospermia underwent surgical sperm retrieval. Using label-free LC-MS/MS, we compared the proteomes of seminal plasma samples from fertile men (healthy controls (HC), n=8) and infertile men diagnosed with 1) OA (n=7), 2) NOA with successful sperm retrieval (mixed testicular atrophy (MTA), n=8), and 3) NOA without sperm retrieval (Sertoli cell-only phenotype (SCO), n=7). Relative abundance changes of two candidate markers of sperm retrieval, HSPA2 and LDHC, were confirmed by Western Blot. Results: We found the protein expression levels of 42 proteins to be significantly down-regulated (p ≤ 0.05) in seminal plasma from SCO NOA patients relative to HC whereas only one protein was down-regulated in seminal plasma from MTA patients. Analysis of tissue and cell expression suggested that the testis-specific proteins LDHC, PGK2, DPEP3, and germ-cell enriched heat-shock proteins HSPA2 and HSPA4L are promising biomarkers of spermatogenic function. Western blotting revealed a significantly lower abundance of LDHC and HSPA2 in the seminal plasma of men with NOA (SCO and MTA) compared to controls. Discussion: The results indicate that certain testis-specific proteins when measured in seminal plasma, could serve as indicators of the presence of sperm in the testis and predict the success of sperm retrieval. Used in conjunction with conventional clinical assessments, these proteomic biomarkers may assist in the non-invasive diagnosis of idiopathic male infertility.


Azoospermia , Biomarkers , Proteomics , Semen , Humans , Male , Azoospermia/metabolism , Azoospermia/diagnosis , Semen/metabolism , Semen/chemistry , Biomarkers/metabolism , Biomarkers/analysis , Biomarkers/blood , Adult , Proteomics/methods , Prospective Studies , Sperm Retrieval , Case-Control Studies , Spermatogenesis/physiology
10.
Front Endocrinol (Lausanne) ; 15: 1369369, 2024.
Article En | MEDLINE | ID: mdl-38660518

Aims: To determine the roles of matrix metallopeptidase-9 (MMP9) on human coronary artery smooth muscle cells (HCASMCs) in vitro, early beginning of atherosclerosis in vivo in diabetic mice, and drug naïve patients with diabetes. Methods: Active human MMP9 (act-hMMP9) was added to HCASMCs and the expressions of MCP-1, ICAM-1, and VCAM-1 were measured. Act-hMMP9 (n=16) or placebo (n=15) was administered to diabetic KK.Cg-Ay/J (KK) mice. Carotid artery inflammation and atherosclerosis measurements were made at 2 and 10 weeks after treatment. An observational study of newly diagnosed drug naïve patients with type 2 diabetes mellitus (T2DM n=234) and healthy matched controls (n=41) was performed and patients had ultrasound of carotid arteries and some had coronary computed tomography angiogram for the assessment of atherosclerosis. Serum MMP9 was measured and its correlation with carotid artery or coronary artery plaques was determined. Results: In vitro, act-hMMP9 increased gene and protein expressions of MCP-1, ICAM-1, VCAM-1, and enhanced macrophage adhesion. Exogenous act-hMMP9 increased inflammation and initiated atherosclerosis in KK mice at 2 and 10 weeks: increased vessel wall thickness, lipid accumulation, and Galectin-3+ macrophage infiltration into the carotid arteries. In newly diagnosed T2DM patients, serum MMP9 correlated with carotid artery plaque size with a possible threshold cutoff point. In addition, serum MMP9 correlated with number of mixed plaques and grade of lumen stenosis in coronary arteries of patients with drug naïve T2DM. Conclusion: MMP9 may contribute to the initiation of atherosclerosis and may be a potential biomarker for the early identification of atherosclerosis in patients with diabetes. Clinical trial registration: https://clinicaltrials.gov, identifier NCT04424706.


Atherosclerosis , Biomarkers , Diabetes Mellitus, Type 2 , Matrix Metalloproteinase 9 , Plaque, Atherosclerotic , Humans , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/blood , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Animals , Biomarkers/metabolism , Mice , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/pathology , Plaque, Atherosclerotic/diagnostic imaging , Male , Female , Middle Aged , Atherosclerosis/metabolism , Atherosclerosis/pathology , Aged , Early Diagnosis , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Diabetes Mellitus, Experimental , Coronary Artery Disease/diagnosis , Coronary Artery Disease/metabolism , Coronary Vessels/pathology , Coronary Vessels/metabolism
11.
Sci Rep ; 14(1): 9166, 2024 04 22.
Article En | MEDLINE | ID: mdl-38644410

Rheumatoid arthritis (RA) is a persistent autoimmune condition characterized by synovitis and joint damage. Recent findings suggest a potential link to abnormal lactate metabolism. This study aims to identify lactate metabolism-related genes (LMRGs) in RA and investigate their correlation with the molecular mechanisms of RA immunity. Data on the gene expression profiles of RA synovial tissue samples were acquired from the gene expression omnibus (GEO) database. The RA database was acquired by obtaining the common LMRDEGs, and selecting the gene collection through an SVM model. Conducting the functional enrichment analysis, followed by immuno-infiltration analysis and protein-protein interaction networks. The results revealed that as possible markers associated with lactate metabolism in RA, KCNN4 and SLC25A4 may be involved in regulating macrophage function in the immune response to RA, whereas GATA2 is involved in the immune mechanism of DC cells. In conclusion, this study utilized bioinformatics analysis and machine learning to identify biomarkers associated with lactate metabolism in RA and examined their relationship with immune cell infiltration. These findings offer novel perspectives on potential diagnostic and therapeutic targets for RA.


Arthritis, Rheumatoid , Computational Biology , Lactic Acid , Machine Learning , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/pathology , Humans , Computational Biology/methods , Lactic Acid/metabolism , Protein Interaction Maps , Biomarkers/metabolism , Gene Expression Profiling , Transcriptome
12.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 279-289, 2024 Mar 20.
Article Zh | MEDLINE | ID: mdl-38645862

Objective: To identify inflamm-aging related biomarkers in osteoarthritis (OA). Methods: Microarray gene profiles of young and aging OA patients were obtained from the Gene Expression Omnibus (GEO) database and aging-related genes (ARGs) were obtained from the Human Aging Genome Resource (HAGR) database. The differentially expressed genes of young OA and older OA patients were screened and then intersected with ARGs to obtain the aging-related genes of OA. Enrichment analysis was performed to reveal the potential mechanisms of aging-related markers in OA. Three machine learning methods were used to identify core senescence markers of OA and the receiver operating characteristic (ROC) curve was used to assess their diagnostic performance. Peripheral blood mononuclear cells were collected from clinical OA patients to verify the expression of senescence-associated secretory phenotype (SASP) factors and senescence markers. Results: A total of 45 senescence-related markers were obtained, which were mainly involved in the regulation of cellular senescence, the cell cycle, inflammatory response, etc. Through the screening with the three machine learning methods, 5 core senescence biomarkers, including FOXO3, MCL1, SIRT3, STAG1, and S100A13, were obtained. A total of 20 cases of normal controls and 40 cases of OA patients, including 20 cases in the young patient group and 20 in the elderly patient group, were enrolled. Compared with those of the young patient group, C-reactive protein (CRP), interleukin (IL)-6, and IL-1ß levels increased and IL-4 levels decreased in the elderly OA patient group (P<0.01); FOXO3, MCL1, and SIRT3 mRNA expression decreased and STAG1 and S100A13 mRNA expression increased (P<0.01). Pearson correlation analysis demonstrated that the selected markers were associated with some indicators, including erythrocyte sedimentation rate (ESR), IL-1ß, IL-4, CRP, and IL-6. The area under the ROC curve of the 5 core aging genes was always greater than 0.8 and the C-index of the calibration curve in the nomogram prediction model was 0.755, which suggested the good calibration ability of the model. Conclusion: FOXO3, MCL1, SIRT3, STAG1, and S100A13 may serve as novel diagnostic biomolecular markers and potential therapeutic targets for OA inflamm-aging.


Aging , Biomarkers , Computational Biology , Machine Learning , Osteoarthritis , Humans , Osteoarthritis/genetics , Osteoarthritis/diagnosis , Osteoarthritis/metabolism , Biomarkers/metabolism , Biomarkers/blood , Computational Biology/methods , Aging/genetics , Inflammation/genetics , Inflammation/metabolism , Forkhead Box Protein O3/metabolism , Forkhead Box Protein O3/genetics , Cellular Senescence/genetics , Sirtuin 3/genetics , Sirtuin 3/metabolism , Gene Expression Profiling , Aged , Male
13.
Cells ; 13(8)2024 Apr 15.
Article En | MEDLINE | ID: mdl-38667298

STED nanoscopy allows for the direct observation of dynamic processes in living cells and tissues with diffraction-unlimited resolution. Although fluorescent proteins can be used for STED imaging, these labels are often outperformed in photostability by organic fluorescent dyes. This feature is especially crucial for time-lapse imaging. Unlike fluorescent proteins, organic fluorophores cannot be genetically fused to a target protein but require different labeling strategies. To achieve simultaneous imaging of more than one protein in the interior of the cell with organic fluorophores, bioorthogonal labeling techniques and cell-permeable dyes are needed. In addition, the fluorophores should preferentially emit in the red spectral range to reduce the potential phototoxic effects that can be induced by the STED light, which further restricts the choice of suitable markers. In this work, we selected five different cell-permeable organic dyes that fulfill all of the above requirements and applied them for SPIEDAC click labeling inside living cells. By combining click-chemistry-based protein labeling with other orthogonal and highly specific labeling methods, we demonstrate two-color STED imaging of different target structures in living specimens using different dye pairs. The excellent photostability of the dyes enables STED imaging for up to 60 frames, allowing the observation of dynamic processes in living cells over extended time periods at super-resolution.


Click Chemistry , Fluorescent Dyes , Fluorescent Dyes/chemistry , Humans , Click Chemistry/methods , HeLa Cells , Microscopy, Fluorescence/methods , Color , Nanotechnology/methods , Biomarkers/metabolism , Staining and Labeling/methods
14.
Cells ; 13(8)2024 Apr 18.
Article En | MEDLINE | ID: mdl-38667317

Analysis of blood-based indicators of brain health could provide an understanding of early disease mechanisms and pinpoint possible intervention strategies. By examining lipid profiles in extracellular vesicles (EVs), secreted particles from all cells, including astrocytes and neurons, and circulating in clinical samples, important insights regarding the brain's composition can be gained. Herein, a targeted lipidomic analysis was carried out in EVs derived from plasma samples after removal of lipoproteins from individuals with Alzheimer's disease (AD) and healthy controls. Differences were observed for selected lipid species of glycerolipids (GLs), glycerophospholipids (GPLs), lysophospholipids (LPLs) and sphingolipids (SLs) across three distinct EV subpopulations (all-cell origin, derived by immunocapture of CD9, CD81 and CD63; neuronal origin, derived by immunocapture of L1CAM; and astrocytic origin, derived by immunocapture of GLAST). The findings provide new insights into the lipid composition of EVs isolated from plasma samples regarding specific lipid families (MG, DG, Cer, PA, PC, PE, PI, LPI, LPE, LPC), as well as differences between AD and control individuals. This study emphasizes the crucial role of plasma EV lipidomics analysis as a comprehensive approach for identifying biomarkers and biological targets in AD and related disorders, facilitating early diagnosis and potentially informing novel interventions.


Alzheimer Disease , Extracellular Vesicles , Lipidomics , Humans , Alzheimer Disease/blood , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Extracellular Vesicles/metabolism , Lipidomics/methods , Female , Male , Aged , Lipids/blood , Case-Control Studies , Aged, 80 and over , Biomarkers/blood , Biomarkers/metabolism , Astrocytes/metabolism , Middle Aged
15.
Cells ; 13(8)2024 Apr 20.
Article En | MEDLINE | ID: mdl-38667330

BACKGROUND: Gaucher disease (GD) is caused by glucocerebrosidase (GCase) enzyme deficiency, leading to glycosylceramide (Gb-1) and glucosylsphingosine (Lyso-Gb-1) accumulation. The pathological hallmark for GD is an accumulation of large macrophages called Gaucher cells (GCs) in the liver, spleen, and bone marrow, which are associated with chronic organ enlargement, bone manifestations, and inflammation. Tartrate-resistant acid phosphatase type 5 (TRAP5 protein, ACP5 gene) has long been a nonspecific biomarker of macrophage/GCs activation; however, the discovery of two isoforms of TRAP5 has expanded its significance. The discovery of TRAP5's two isoforms revealed that it is more than just a biomarker of macrophage activity. While TRAP5a is highly expressed in macrophages, TRAP5b is secreted by osteoclasts. Recently, we have shown that the elevation of TRAP5b in plasma is associated with osteoporosis in GD. However, the role of TRAP isoforms in GD and how the accumulation of Gb-1 and Lyso-Gb-1 affects TRAP expression is unknown. METHODS: 39 patients with GD were categorized into cohorts based on bone mineral density (BMD). TRAP5a and TRAP5b plasma levels were quantified by ELISA. ACP5 mRNA was estimated using RT-PCR. RESULTS: An increase in TRAP5b was associated with reduced BMD and correlated with Lyso-Gb-1 and immune activator chemokine ligand 18 (CCL18). In contrast, the elevation of TRAP5a correlated with chitotriosidase activity in GD. Lyso-Gb-1 and plasma seemed to influence the expression of ACP5 in macrophages. CONCLUSIONS: As an early indicator of BMD alteration, measurement of circulating TRAP5b is a valuable tool for assessing osteopenia-osteoporosis in GD, while TRAP5a serves as a biomarker of macrophage activation in GD. Understanding the distinct expression pattern of TRAP5 isoforms offers valuable insight into both bone disease and the broader implications for immune system activation in GD.


Gaucher Disease , Protein Isoforms , Tartrate-Resistant Acid Phosphatase , Gaucher Disease/metabolism , Gaucher Disease/genetics , Humans , Tartrate-Resistant Acid Phosphatase/metabolism , Protein Isoforms/metabolism , Protein Isoforms/genetics , Female , Male , Middle Aged , Adult , Bone Density , Macrophages/metabolism , Biomarkers/metabolism , Biomarkers/blood , Isoenzymes/metabolism , Isoenzymes/genetics
16.
Mol Biol Rep ; 51(1): 579, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38668953

Lysosomal cathepsins as a regulatory medium have been assessed as potential therapeutic targets for the treatment of various cardiac diseases such as abdominal aortic aneurysm, hypertension, cardiomyopathy, coronary heart disease, atherosclerosis, etc. They are ubiquitous lysosomal proteases with papain-like folded protein structures that are involved in a variety of physiological processes, such as the digestion of proteins, activation of pro-inflammatory molecules, degradation of extracellular matrix components, and maturation of peptide hormones. Cathepsins are classified into three major groups: cysteine cathepsins, aspartic cathepsins, and serine-threonine cathepsins. Each of these groups is further divided into subgroups based on their substrate specificity, structural characteristics, and biochemical properties. Several studies suggest that cathepsins control the degradation of ECM components such as collagen and elastin fibres. These enzymes are highly expressed in macrophages and inflammatory cells, and their upregulation has been demonstrated to be critical in the progression of atherosclerotic lesions. Additionally, increased cathepsin activity has been linked to increased vascular inflammation and oxidative stress, both of which are associated with CVDs. Specifically, the inhibition of cathepsins may reduce the release of pro-apoptotic mediators such as caspase-3 and PARP-1, which are thought to contribute to plaque instability. The potential of cathepsins as biomarkers and therapeutic targets has also been supported by the identification of potential cathepsin inhibitors, which could be used to modulate the activities of cathepsins in a range of diseases. This review shall familiarise the readers with the role of cysteinyl cathepsins and their inhibitors in the pathogenesis of cardiovascular diseases.


Cardiovascular Diseases , Cathepsins , Humans , Cathepsins/metabolism , Cardiovascular Diseases/metabolism , Animals , Oxidative Stress , Atherosclerosis/metabolism , Biomarkers/metabolism , Lysosomes/metabolism , Extracellular Matrix/metabolism
17.
Aging (Albany NY) ; 16(7): 6314-6333, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38575196

BACKGROUND: Coagulation system is currently known associated with the development of ischemic stroke (IS). Thus, the current study is designed to identify diagnostic value of coagulation genes (CGs) in IS and to explore their role in the immune microenvironment of IS. METHODS: Aberrant expressed CGs in IS were input into unsupervised consensus clustering to classify IS subtypes. Meanwhile, key CGs involved in IS were further selected by weighted gene co-expression network analysis (WGCNA) and machine learning methods, including random forest (RF), support vector machine (SVM), generalized linear model (GLM) and extreme-gradient boosting (XGB). The diagnostic performance of key CGs were evaluated by receiver operating characteristic (ROC) curves. At last, quantitative PCR (qPCR) was performed to validate the expressions of key CGs in IS. RESULTS: IS patients were classified into two subtypes with different immune microenvironments by aberrant expressed CGs. Further WGCNA, machine learning methods and ROC curves identified ACTN1, F5, TLN1, JMJD1C and WAS as potential diagnostic biomarkers of IS. In addition, their expressions were significantly correlated with macrophages, neutrophils and/or T cells. GSEA also revealed that those biomarkers may regulate IS via immune and inflammation. Moreover, qPCR verified the expressions of ACTN1, F5 and JMJD1C in IS. CONCLUSIONS: The current study identified ACTN1, F5 and JMJD1C as novel coagulation-related biomarkers associated with IS immune microenvironment, which enriches our knowledge of coagulation-mediated pathogenesis of IS and sheds light on next-step in vivo and in vitro experiments to elucidate the relevant molecular mechanisms.


Biomarkers , Ischemic Stroke , Machine Learning , Humans , Ischemic Stroke/genetics , Ischemic Stroke/diagnosis , Ischemic Stroke/immunology , Biomarkers/metabolism , Blood Coagulation/genetics , ROC Curve , Actinin/genetics , Support Vector Machine , Male
18.
Front Immunol ; 15: 1374763, 2024.
Article En | MEDLINE | ID: mdl-38596682

Background: Psoriasis is an immune-mediated disorder influenced by environmental factors on a genetic basis. Despite advancements, challenges persist, including the diminishing efficacy of biologics and small-molecule targeted agents, alongside managing recurrence and psoriasis-related comorbidities. Unraveling the underlying pathogenesis and identifying valuable biomarkers remain pivotal for diagnosing and treating psoriasis. Methods: We employed a series of bioinformatics (including single-cell sequencing data analysis and machine learning techniques) and statistical methods to integrate and analyze multi-level data. We observed the cellular changes in psoriatic skin tissues, screened the key genes Fatty acid binding protein 5 (FABP5) and The killer cell lectin-like receptor B1 (KLRB1), evaluated the efficacy of six widely prescribed drugs on psoriasis treatment in modulating the dendritic cell-associated pathway, and assessed their overall efficacy. Finally, RT-qPCR, immunohistochemistry, and immunofluorescence assays were used to validate. Results: The regulatory influence of dendritic cells (DCs) on T cells through the CD70/CD27 signaling pathway may emerge as a significant facet of the inflammatory response in psoriasis. Notably, FABP5 and KLRB1 exhibited up-regulation and co-localization in psoriatic skin tissues and M5-induced HaCaT cells, serving as potential biomarkers influencing psoriasis development. Conclusion: Our study analyzed the impact of DC-T cell crosstalk in psoriasis, elucidated the characterization of two biomarkers, FABP5 and KLRB1, in psoriasis, and highlighted the promise and value of tofacitinib in psoriasis therapy targeting DCs.


Psoriasis , Humans , Psoriasis/drug therapy , Skin/pathology , Keratinocytes/metabolism , Biomarkers/metabolism , Dendritic Cells/metabolism , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism , NK Cell Lectin-Like Receptor Subfamily B/metabolism
19.
Zhongguo Zhong Yao Za Zhi ; 49(3): 681-690, 2024 Feb.
Article Zh | MEDLINE | ID: mdl-38621872

This study aims to reveal the quality formation of different cultivars of Peucedanum praeruptorum based on the metabolic differences and provide a theoretical basis for the development and utilization of this medicinal herb. The non-target metabonomics analysis based on ultra-high performance liquid chromatography tandem mass spectrometry(UHPLC-MS/MS) was conducted for six cultivars(YS, H, LZ, LY, LX, and Z) of P. praeruptorum of the same origin and at the same development stage. The principal component analysis, orthogonal partial least squares discriminant analysis, and univariate statistical analysis were carried out to screen the differential metabolites of different cultivars. The potential biomarkers associated with quality formation were predicted based on the mass-to-charge ratio, Kyoto Encyclopedia of Genes and Genomes pathway enrichment, information of relevant literature, and correlation analysis. The results showed that metabolites differed significantly among the six cultivars, and 571 and 465 differential metabolites were obtained in the positive and negative ion modes, respectively. From the differential metabolites, 22 potential biomarkers related to quality formation were predicted, which involved 9 metabolic pathways, including phenylalanine, tyrosine and tryptophan biosynthesis, biosynthesis of phenylpropanoids, and biosynthesis of plant hormones. Compared with the YS cultivar, other cultivars showed decreased concentrations of psoralen, imperatorin, and luvangetin and increased concentrations of 7-hydroxycoumarine, esculetin, columbianetin, and jasmonic acid, which were involved in the biosynthesis of phenylpropanoids. The concentrations of 2-succinylbenzoate, heraclenol, and L-tyrosine involved in other metabolic pathways decreased, especially in the Z and H cultivars. Therefore, regulating the biosynthesis of phenylpropanoids is one of the key mechanisms for improving the cultivar quality of P. praeruptorum. The Z and H cultivars have better quality and metabolic processes than other cultivars and thus can be used for the screening and breeding of high-quality germplasm.


Plant Breeding , Tandem Mass Spectrometry , Metabolomics/methods , Chromatography, High Pressure Liquid/methods , Biomarkers/metabolism
20.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1225-1239, 2024 Mar.
Article Zh | MEDLINE | ID: mdl-38621969

Ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS) was employed to investigate the impacts of Pruni Semen processed with different methods(raw and fried) on the liver and spleen metabolism in mice. A total of 24 male mice were randomly assigned to three groups: raw Pruni Semen group, fried Pruni Semen group, and control(deionized water) group. Mice in the three groups were orally administrated with 0.01 g·mL~(-1) Pruni Semen decoction or deionized water for one week. After that, the liver and spleen tissues were collected, and liquid chromatography-mass spectrometry(LC-MS)-based metabolomic analysis was carried out to investigate the impact of Pruni Semen on the liver and spleen metabolism in mice. Compared with thte control group, the raw Pruni Semen group showed up-regulation of 11 metabolites and down-regulation of 57 metabolites in the spleen(P<0.05), as well as up-regulation of 15 metabolites and down-regulation of 58 metabolites in the liver(P<0.05). The fried Pruni Semen group showed up-regulation of 31 metabolites and down-regulation of 10 metabolites in the spleen(P<0.05), along with up-regulation of 26 metabolites and down-regulation of 61 metabolites in the liver(P<0.05). The differential metabolites identified in the raw Pruni Semen group were primarily associated with alanine, aspartate, and glutamate metabolism, purine metabolism, amino sugar and nucleotide sugar metabolism, and D-glutamine and D-glutamate metabolism. The differential metabolites identified in the fried Pruni Semen group predominantly involved riboflavin metabolism, amino sugar and nucleotide sugar metabolism, purine metabolism, alanine, aspartate, and glutamate metabolism, D-glutamine and D-glutamate metabolism, and glutathione metabolism. The findings suggest that both raw and fried Pruni Semen have the potential to modulate the metabolism of the liver and spleen in mice by influencing the glutamine and glutamate metabolism.


Glutamic Acid , Spleen , Mice , Male , Animals , Semen , Glutamine , Aspartic Acid , Metabolomics/methods , Liver/metabolism , Alanine/metabolism , Amino Sugars/metabolism , Water/metabolism , Nucleotides/metabolism , Purines/metabolism , Sugars , Chromatography, High Pressure Liquid , Biomarkers/metabolism
...